A Professor of Electrical Engineering at Stanford University has projected that the In-situ detection of chemical changes in human body at the cellular level can bring enormous benefits in diagnosis and in therapeutic monitoring. Professor Wong’s research aims at translating discoveries in science into practical technologies. His works have contributed to advancements in nanoscale science and technology, semiconductor technology, solid-state devices, and electronic imaging.
According to Wong, “We are developing techniques to place micron-sized sensor chip inside each cell. It might revolutionize biochemical imaging by introducing the concept of replacing “passive” radiotracers with “active” IC chips. This may open up an array of new biomedical applications that range from novel medical diagnostic and therapeutic tools that operate at single cell level to a novel class of autonomously operating intrabody nanobiosensors. These wireless bio-sensors can be used for autonomous, continuous-time, in vivo monitoring. Nanofabrication and integrated electronics are the key enabling technologies of this research.
Professor Wong is a Fellow of the IEEE. He served as the Editor-in-Chief of the IEEE Transactions on Nanotechnology in 2005 – 2006, sub-committee Chair of the ISSCC (2003 – 2004), General Chair of the IEDM (2007), and is currently the Chair of the IEEE Executive Committee of the Symposia of VLSI Technology and Circuits. He is the founding Faculty Co-Director of the Stanford SystemX Alliance – an industrial affiliate program focused on building systems.
Source